If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-125X+3750=0
a = 1; b = -125; c = +3750;
Δ = b2-4ac
Δ = -1252-4·1·3750
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-125)-25}{2*1}=\frac{100}{2} =50 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-125)+25}{2*1}=\frac{150}{2} =75 $
| 5^2x-26(5^x)+25=0 | | 0.3d-0.1+0.1d=2.3 | | 13n+4=3 | | -45=-u/5 | | 10/12=2.5/a | | 6x+4(2x+3-x)=2(5x+6) | | 198=15+5d/11 | | 5r+30=5r-20 | | -49=9x+14 | | 5-3(19/5)+2x=-8 | | 1/3(s+726)=1632 | | 3x+111=11x+7 | | 5x^2+4x=2-5x | | -4x+4=-72 | | 34.7z=68.2 | | 4u-14=26 | | 3a+4(5-2a)-12=2(4-5a) | | -192=-8(-4n+4) | | 5r+30=-5r-4 | | 3q+4=-20 | | y/3-11=19 | | 9.3=n=3.4 | | 1(-1/5)x=(-4/5)(5+x) | | 5(t+6.50)=248.50 | | 89=5w+14 | | -18=6k=6(1+3k) | | 5(-2x-1)-10=6-(2+3x) | | 0=x^2-125x+3750 | | 5^2x=12 | | 4(3x-2)=38-2(2x-1) | | 5t-2=+17 | | -12=-7+5h |